Momentum, Heat and Mass Transfer

Mass Transfer
The rate of diffusion of a constituent Ain a mixture is proportion to its concentration gradient according
to Fick's Law of diffusion

Where : dy

N, : is the molar rate of diffusion of constituent A per unit area , (Kmol / m? .s)
C, :is the molar concentration of constituent A , (Kmol/m?)

D : is the mass diffusivity , (m?/sec.)

NA=_D

% is called the kinematic viscosity (transfer of the momentum )

k. e
e is called the thermal diffusivity D y(transfer of the heat)
p

D  is called the diffusivity (transfer of the mass)

The essential similarity between the three processes is that the rates of transfer of momentum, heat, and mass
are all proportional to the concentration gradients of these quantities.

All have a dimensions (L?/time) (m?/s)



Momentum, Heat and Mass Transfer

Viscosity

Consider the flow of a gas parallel to a solid surface and the movement of molecules at right
angles to this direction through a plane a-a of unit area, parallel to the surface and sufficiently
close to it to be within the laminar sublayer as shown in figure

During an interval of time dt, molecules with an
average velocity i; U, in the Y-direction will pass
through the plane (where u,, 1s the root mean
square velocity and i, 1s some fraction of u,,, Y ;
depending on the actual distribution of velocities).
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It all these molecules can be considered as having the same component of
velocity in the Y -direction, molecules from a volume = iqu,,,(m/s) (1 m?) dt will

pass through the plane in time dt.

no.of molecules

If N 1s the numerical concentration of molecules close to the surface, = T—

the number of molecules passing = i;u,, N.dt

i ume (M/S) N . (1) . dt
dt

Thus, the rate of passage of molecules = =i; u, N (mole/(m?s)

These molecules have a mean velocity u, (say) in the X-direction.



Thus the rate at which momentum is transferred across the plane away
from the surface =i; .N.u,,,.m.u,

where m 1s the mass of each molecule.

By similar reasoning there must be an equivalent stream of molecules
also passing through the plane(a-a) but in the opposite direction;
otherwise there would be a resultant flow perpendicular to the surface.

If this other stream of molecules has originated at a distance jA from the
previous ones, and the mean component of their velocities 1in the X-
direction is u,

where A is the mean free path of the molecules and j is some fraction of

the order of unity then:



The net rate of transfer of momentum away from the surface
=i;Nu,, m(u, —u,)

: : : T d Y =
The gradient of the velocity with respect to the Y-direction diyx = (uxj Aux)

Since A is small
Thus the rate of transfer of momentum per unit area which can be written as:
R, =—1i; N.uy, jA

(the density of the flud p=N.m)
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The value of product (1.]) = % from statistical treatment of the velocities of the molecules
1
=-u,A
2

ud
R,=0%-yd = =222
U Ty} Uy A

Re 1s proportional to the product of the ratio of the flow velocity to the molecular
velocity and the ratio of the characteristic linear dimension of the system to the mean
free path of the molecules.

From kinetic theory:

8RT RT

A= |— for gases only . m= molecular weight
mm 2mTm

So, viscosity of a gas would be a function of temperature but not of pressure.
Newton m

Units u = poise (1g-cm™t-s1) T=°K R= 3%

Kmol




Thermal conductivity :-

The same figure (1) where is a transfer of temperature gradient in y- direction. The rate of passage of

dt

molecule through the unit plane (a-a) = =i, U, N

i,=1s some fraction of order of unity .

If the temperature difference between two points situated a distance (j. 1) a partis (6 — 0").
The net heat transfer as one molecule pass=1.c,,,(8 — 8")
Where =c,,,=i1s the heat capacity per 1 molecule.

. de 6-6
The temperature gradient =51
. . .dob
The net rate of heat transfer per unit area =q,, = - iUy, N ¢y 4) o

Since Nc,,= pc, specific heat per unit volume of fluid.

qy=-iz-j.- U Cy.p. )la but, qyz-ka/



Thus thermal diffusivity:-

— =1 ] CL - —L . o« o 2
P l2:] - U A ) (+¢p) Dy erp thermal diffusivity(m=/s)

9y-5 c
where y =%
Cyp

From statistical calculation i,.j=(

K (q Y- 5 A
Cp-P
The Prandtl number Pr 1s defined as the ratio of the kinematic viscosity to the thermal

diffusivity.

C “Um-A 4 . .
Pr = _ulép == =X =—2L for molecular diffusion.
e K ( , ) Um. A =5
pc
2u d 4
R, =2+ 4 p, =¥



Diffusivity :-

Considering the diffusion, in the Y-direction, of one constituent A of a mixture across the
plane a-a, If the numerical concentration is C, on one side and C, in the other side which is
operated by a distance

(G4) -
Net rate passage of molecules=i;u,,(C4 _C,)
i3=1s a fraction of the order of unity .

Rate of mass transfer per unit area =isu,,, (C4 _C,).m

dcg  Cy Chy
dy  ].A

Concentration gradient of A in Y- direction =

ay

The rate of mass transfer per unit area =- i5.u,,.J.4



D =i3.).A .Uy,

There 1s, however, no satisfactory evaluation of the product i5.j.

The ratio of the kinematic viscosity to the diffusivity 1s the Schmidt number, Sc, where;
/o _ u i uy

Sc=p T pD i3] A um
% =1i;J.4.u,,  Kkinematic viscosity
K . . e
- p=lz.J./1 V. thermal diffusivity
p
D=i5.j.A . u,, diffusivity
K

£ Or Or Dau,, 4
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It 1s thus seen that the kinematic viscosity, the thermal diffusivity, and the diffusivity for

mass transfer are all proportional to the product of the mean free path and the root

mean square velocity of the molecules, and that the expressions for the transfer of
momentum, heat, and mass are of the same form.

For liquids the same qualitative forms of relationships exist, but 1t 1s not possible

to express the physical properties of the liquids in terms of molecular velocities and

distances.



EDDY TRANSFER ( Turbulent flow)

A fluid 1n turbulent flow 1s characterised by the presence of circulating or eddy currents, and
these are responsible for fluid mixing which, in turn, gives rise to momentum, heat or mass
transter when there 1s an appropriate gradient of the "property*.

PRANDTL and TAYLOR both developed the concept of a mixing length (A )as a measure of
the distance which an element of fluid must travel before it loses its original 1dentity and
becomes fully assimilated by the fluid in its new position.

The mixing length 1s analogous in concept to the mean free path of gas molecules which,
according to the kinetic theory 1s the mean distance a molecule travels before it collides with
another molecule and loses its original i1dentity.

In turbulent flow over a surface, a velocity gradient, and hence a momentum gradient, exists
within the fluid. Any random movement perpendicular to the surface gives rise to a momentum

transfer. Elements of flud with high velocities are brought from remote regions towards the
surface and change places with slower moving fluid elements.



For turbulent flow the velocity profile with mean flow in Y- direction at point (1)

the mean velocity is u,, a portion of fluid at region (1) accelerates to u,+u’ at point
(2) or

u, =u,; +u’ Ustu
N . . . A
¢ A) Calculation of mixing length (Ap): Z /
The velocities at 1 and 2 can be related by : S 4%
du > :
U =1y +d_3c (X2 —x1) 1 5
U, =u; +u Distance (x)

X, — X+ )= Ar Prandtl mixing length.
(%2 1) E & &t Velocity profile

. for turbulent flow
+* B) Calculation of shear stress:

From the velocity profile
W= g =y, + 0
2= W AR =
I/
u=Ap—
E gy

whereu’ = ug: mean eddy velocity or fluctuation velocity



R = pu
du
R = prg(52)°
P E(dx)
E: eddy diffusivity =22 Il = |
And rate of momentum due to eddy motionis

R=Epl % | for turbulent

the eddy kinematic viscosity E, the eddy thermal diffusivity E;; and the eddy diffusivity E,
analogous to [u/p, k / p C, and D for molecular transport.

Extending the analogy further, E, E;; and E, might be expected to be proportional to the product of a velocity term and
a length term, each of which is characteristic of the eddies in the fluid. Whereas u/p, k/p C, and D are all physical
properties of the fluid and, for a material of given composition at a specified temperature and pressure have unique
values, the eddy terms E, EH and ED all depend on the intensity of the eddies. In general, therefore, they are a function

of the flow pattern and vary from point to point within the fluid.



