
Momentum, Heat and Mass Transfer  

Mass Transfer 
The rate of diffusion of a constituent A in a mixture is proportion to its concentration gradient according 

to Fick's Law of diffusion 𝑁𝐴 = −𝐷 𝑑𝐶𝐴𝑑𝑦  

Where :  

NA : is the molar rate of diffusion of constituent A per unit area , (Kmol / m2 .s) 

CA :is the molar concentration of constituent A , (Kmol/m3) 

D : is the mass diffusivity , (m2/sec.) 

------------------------------------------------------------------------------------------- 𝝁𝝆      is called the kinematic viscosity (transfer of the momentum )  𝒌𝝆𝒄𝒑   is called the thermal diffusivity 𝑫𝑯(transfer of the heat) 𝑫      is called the diffusivity (transfer of the mass) 
The essential similarity between the three processes is that the rates of transfer of momentum, heat, and mass 

are all proportional to the concentration gradients of these quantities. 

All have a dimensions (L2 /time) (m2/s) 



Momentum, Heat and Mass Transfer  

Viscosity 

Consider the flow of a gas parallel to a solid surface and the movement of molecules at right 

angles to this direction through a plane a-a of unit area, parallel to the surface and sufficiently 

close to it to be within the laminar sublayer as shown in figure 

 𝒖𝒎 = 𝒖𝟏+𝒖𝟐+⋯.𝒖𝒏𝒏𝒐.𝒐𝒇 𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆𝒔  =   𝒖𝒏𝒏𝒐.𝒐𝒇 𝒎𝒐𝒍𝒆𝒄𝒖𝒍𝒆𝒔  

𝒊𝟏 = 𝒂𝒗𝒂𝒓𝒂𝒈𝒆 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒓𝒐𝒐𝒕 𝒎𝒆𝒂𝒏 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 

During an interval of time dt, molecules with an 

average velocity 𝑖1𝑢𝑚  in the Y-direction will pass 

through the plane (where 𝑢𝑚  is the root mean 

square velocity and 𝒊𝟏 is some fraction of 𝑢𝑚 , 

depending on the actual distribution of velocities). 

Figure (1) Transfer of momentum near a surface 



If all these molecules can be considered as having the same component of 

velocity in the Y -direction, molecules from a volume = 𝒊𝟏𝒖𝒎(m/s) ( 1 m2) dt will 

pass through the plane in time dt. 

If N is the numerical concentration of molecules close to the surface, = 
𝑛𝑜.𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑣𝑜𝑙𝑢𝑚𝑒  

the number of molecules passing = 𝑖1𝑢𝑚  𝑁. 𝑑𝑡 
Thus,   the rate of passage of molecules =  

𝑖1  . 𝑢𝑚. (m/s) N . ( 1) . dt𝑑𝑡 = 𝑖1 𝑢𝑚 𝑁   (mole/(m2 s) 

These molecules have a mean velocity 𝑢𝑥  (say) in the X-direction. 



Thus the rate at which momentum is transferred across the plane away 

from the surface  = 𝑖1 . 𝑁 . 𝑢𝑚 . 𝑚 . 𝑢𝑥  

 

where m is the mass of each molecule. 

By similar reasoning there must be an equivalent stream of molecules 

also passing through the plane(a-a) but in the opposite direction; 

otherwise there would be a resultant flow perpendicular to the surface. 

If this other stream of molecules has originated at a distance 𝒋𝝀 from the 

previous ones, and the mean component of their velocities in the X-

direction is 𝑢𝑥′   

where 𝝀 is the mean free path of the molecules and j is some fraction of 

the order of unity then: 



The net rate of transfer of momentum away from the surface  

= 𝑖1𝑁 𝑢𝑚  𝑚(𝑢𝑥  −𝑢𝑥′ ) 

The gradient of the velocity with respect to the Y-direction         
𝑑𝑢𝑥𝑑𝑦 = (𝑢𝑥′  − 𝑢𝑥)𝑗𝜆  

Since 𝜆 is small 

Thus the rate of transfer of momentum per unit area which can be written as: 𝑅𝑦 = − 𝑖1 𝑵.𝒖𝒎 .𝒎  𝑗𝜆       
  (the density of the fluid    ρ =N . m)    

= −𝒊𝟏𝒖𝒎𝝆𝑗𝜆 𝑑𝑢𝑚𝑑𝑦  

 

 



And        𝑅𝑦 = − 𝜇 𝑑𝑢𝑥𝑑𝑦                  𝜇𝜌 = 𝒊𝟏𝒖𝒎 𝑗𝜆 

The value of product (i.j) = 
12  from statistical treatment of the velocities of the molecules                  𝜇𝜌 = 12𝒖𝒎𝜆  

It is now possible to give a physical interpretation to the Reynolds number: 𝑅𝑒 = 𝜌𝑢𝑑𝜇  = 𝑢𝑑 
𝟐𝒖𝒎𝝀   =  2 

𝑢𝑢𝑚 . 𝑑𝜆  

Re is proportional to the product of the ratio of the flow velocity to the molecular 

velocity and the ratio of the characteristic linear dimension of the system to the mean 

free path of the molecules. 

From kinetic theory:  𝑢𝑚 = 8𝑅𝑇𝜋 𝑚              𝜆 = 𝑅𝑇2𝜋𝑚            for gases only .  m= molecular weight 

So, viscosity of a gas would be a function of temperature but not of pressure. 

Units      𝜇 = 𝑝𝑜𝑖𝑠𝑒  (1 g⋅cm−1⋅s−1 )        T=°K           R=
𝑁𝑒𝑤𝑡𝑜𝑛    𝑚𝐾𝑚𝑜𝑙      °K 



 

Thermal conductivity :-  
The same figure (1) where is a transfer of temperature gradient in y- direction. The rate of  passage of 

molecule through the unit plane (a-a) =
𝑖2𝑢𝑚𝑁.1𝑑𝑡𝑑𝑡  =𝑖2𝑢𝑚𝑁 𝑖2=is some fraction of order of unity . 

 

If the temperature difference between two points situated a distance (j. 𝜆) a part is (𝜃 − 𝜃′). 
The net heat transfer as one molecule pass=1.𝑐𝑚(𝜃 − 𝜃′)  
Where =𝑐𝑚=is the heat capacity per 1 molecule . 

The temperature gradient =
𝑑𝜃𝑑𝑦=

𝜃−𝜃𝜆𝑗  

The net rate of heat transfer per unit area =𝑞𝑦 = - 𝑖2𝑢𝑚. N 𝑐𝑚. 𝜆𝑗 𝑑𝜃𝑑𝑦 

Since    N𝑐𝑚= 𝜌𝑐𝑣        specific heat per unit volume of fluid.   

 

  𝑞𝑦= - 𝑖2. 𝑗. 𝑢𝑚. 𝑐𝑣.𝜌. 𝜆 𝑑𝜃𝑑𝑦     but , 𝑞𝑦=-k
𝑑𝜃𝑑𝑦 

       -k
𝑑𝜃𝑑𝑦  = - 𝑖2. 𝑗. 𝑢𝑚. 𝑐𝑣.𝜌. 𝜆 𝑑𝜃𝑑𝑦 



Thus thermal diffusivity:- 𝑘𝑐𝑝.𝜌 = 𝑖2. 𝑗. 𝑢𝑚 . 𝜆 𝑐𝑣 𝑐𝑝      ( cp)        𝐷𝐻  =
𝑘𝑐𝑝 .𝜌     𝑡ℎ𝑒𝑟𝑚𝑎𝑙 diffusivity(𝑚2/s) 

From statistical calculation   𝑖2. 𝑗= (9 𝛾−58 )                where   𝛾 = 𝑐𝑝 𝑐𝑣  

𝐾𝑐𝑝.𝜌 = (𝑞 𝛾_58 𝛾 ) .𝑢𝑚 . 𝜆 

The Prandtl number Pr is defined as the ratio of the kinematic viscosity to the thermal 

diffusivity. 

𝑝𝑟 = 𝜇/𝜌𝐾𝜌 𝑐𝜌        = 
𝑐𝑝.𝜇𝐾         = 12𝑢𝑚.𝜆  (𝑞 𝛾_58 𝛾 ) .𝑢𝑚. 𝜆   = 

4  𝛾9𝛾− 5   for molecular diffusion. 

𝑹𝒆 = 𝟐𝒖𝒖𝒎 . 𝒅𝝀                       𝑷𝒓 = 𝟒  𝜸𝟗𝜸−𝟓 
 



Diffusivity :- 

Considering the diffusion, in the Y-direction, of one constituent A of a mixture across the 

plane a-a, If the numerical concentration is 𝐶𝐴  on one side and 𝐶𝐴′  in the other side which is 

operated by a distance  

(j𝜆) . 
Net rate passage of molecules=𝑖3𝑢𝑚(𝐶𝐴 _𝐶𝐴′ ) 𝑖3= is a fraction of  the order of unity . 

Rate of mass transfer per unit area =𝑖3𝑢𝑚  (𝐶𝐴 _𝐶𝐴′ ).m  

Concentration gradient of A in Y- direction =
𝑑𝑐𝑎𝑑𝑦  = 

𝐶𝐴′ _𝐶𝐴 
j.𝜆  

The rate of mass transfer per unit area =- 𝑖3. 𝑢𝑚 .j.𝜆 𝑑𝐶𝑎 𝑑𝑦  



𝑁𝐴 = −𝐷 𝑑𝐶𝐴 𝑑𝑦       

D =𝑖3.j.𝜆 . 𝑢𝑚                           

 There is, however, no satisfactory evaluation of the product 𝑖3.j. 
The ratio of the kinematic viscosity to the diffusivity is the Schmidt number, Sc, where; 𝑠𝑐 = 𝜇/𝜌𝐷   = 

𝜇𝜌 𝐷 =𝑖1.j.𝜆 .𝑢𝑚𝑖3.j.𝜆 .𝑢𝑚 

 𝜇𝜌 = 𝑖1 .j.𝜆 . 𝑢𝑚       kinematic viscosity  

 𝐾𝑐𝑝  𝜌=𝑖2.j.𝜆 . 𝑢𝑚                 thermal diffusivity 

 

D=𝑖3.j.𝜆 . 𝑢𝑚                                      diffusivity 

 𝜇𝜌    Or   
𝐾𝑐𝑝  𝜌   Or   D α 𝑢𝑚  𝜆 



It is thus seen that the kinematic viscosity, the thermal diffusivity, and the diffusivity for 

mass transfer are all proportional to the product of the mean free path and the root 

mean square velocity of the molecules, and that the expressions for the transfer of 

momentum, heat, and mass are of the same form. 

For liquids the same qualitative forms of relationships exist, but it is not possible 

to express the physical properties of the liquids in terms of molecular velocities and 

distances. 



EDDY TRANSFER ( Turbulent flow) 

A fluid in turbulent flow is characterised by the presence of circulating or eddy currents, and 

these are responsible for fluid mixing which, in turn, gives rise to momentum, heat or mass 

transfer when there is an appropriate gradient of the "property“.  

PRANDTL and TAYLOR both developed the concept of a mixing length (𝐸)as a measure of 

the distance which an element of fluid must travel before it loses its original identity and 

becomes fully assimilated by the fluid in its new position. 

The mixing length is analogous in concept to the mean free path of gas molecules which, 

according to the kinetic theory is the mean distance a molecule travels before it collides with 

another molecule and loses its original identity. 

 

In turbulent flow over a surface, a velocity gradient, and hence a momentum gradient, exists 

within the fluid. Any random movement perpendicular to the surface gives rise to a momentum 

transfer. Elements of fluid with high velocities are brought from remote regions towards the 

surface and change places with slower moving fluid elements. 
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Velocity profile  

for turbulent flow 

For turbulent flow the velocity profile with mean flow in Y- direction at point (1) 

the mean velocity is u1, a portion of fluid at region (1) accelerates to u1+𝑢′ at point 

(2) or  

u2 =u1 +u′ 
 A) Calculation of mixing length (𝐸): 

The velocities at 1 and 2 can be related by : 

u2 = u1 +
𝑑𝑢𝑑𝑥 (𝑥2 − 𝑥1)  

u2 = u1 +u′ 
(𝑥2 − 𝑥1)= 𝐸 Prandtl mixing length. 

 

 B) Calculation of shear stress: 

From the velocity profile 

 u2 = u1 +𝐸 𝑑𝑢𝑑𝑥 = u1 + u′ 
u′ = 𝐸 𝑑𝑢𝑑𝑥    

where u′ = uE : mean eddy velocity  or fluctuation velocity 



𝑅 =  𝜌𝑢′ 2 𝑅 =  𝜌 𝐸2(𝑑𝑢𝑑𝑥)2 

E: eddy diffusivity = 𝐸2 ∥ 𝑑𝑢𝑑𝑥 ∥ 
And rate of momentum due to eddy motion is  𝑅 = 𝐸𝜌 ∥ 𝑑𝑢𝑑𝑥 ∥ for turbulent  

the eddy kinematic viscosity E, the eddy thermal diffusivity EH and the eddy diffusivity ED 

analogous to [µ/ρ, k / ρ Cp and D for molecular transport. 

 

Extending the analogy further, E, EH and ED might be expected to be proportional to the product of a velocity term and 

a length term, each of which is characteristic of the eddies in the fluid. Whereas µ/ρ, k / ρ Cp and D are all physical 

properties of the fluid and, for a material of given composition at a specified temperature and pressure have unique 

values, the eddy terms E, EH and ED all depend on the intensity of the eddies. In general, therefore, they are a function 

of the flow pattern and vary from point to point within the fluid. 


